CONTENTS

SUBSECTION		PAGE
0 6.1	Manufacturing objectives	55
6.2	Incorporation of temporary works	56
6.3	Marking of steelwork	56
6.4	Trial erection	57
6.5	Protective treatment	57
6.6	Pre-assembly at the factory	58
6.7	Delivery to site	58
7	IMPLEMENTING THE ERECTION SCHEME	
7.1	Introduction	60
7.2	Handover of the site	60
7.3	Site management	61
7.4	Use of the Erection Method Statement	61
7.5	Induction and briefing	62
7.6	Delivery and offloading steelwork	63
7.7	Lifting operations	64
7.8	Management of wind effects	67
7.9	Alignment and bearings	70
7.1U 7.11	Making connections	74
/. 7.10	Deck construction	/0 70
7.12 7.12	Completion	70 70
7.15	Completion	19
8	ERECTION TASKS	
8.1	Carrying out erection tasks	81
8.2	Personal protection	81
8.3	Safety of equipment	83
8.4	Common tasks	83
8.5	Health hazards	87
8.6	Accidents and emergencies	90
	REFERENCES	92
	APPENDICES	
Appendix 1	The Register of Qualified Steelwork Contractors	93
Appendix 2	Model Erection Method Statement	96
Appendix 3	Regulations and Documentation	101
Appendix 4	Bridge Safe Site Handover Certificate	102

PREFACE

Bridges are built for Clients by construction industry teams of Designers, Contractors and Subcontractors with representatives of the Client. For a bridge constructed of steel, with or without a concrete deck, the Steelwork Contractor is either the major subcontractor or, on occasions, the Principal Contractor. The Steelwork Contractor is often, but not always, responsible for the erection of the steelwork on site as well as for fabrication. Whatever the contractual relationships within the team, success is achieved only through communication, cooperation, coordination and leadership. Effective teamwork depends on mutual understanding of roles and responsibilities and the effects on and consequences for others of team members' choices and decisions: performance depends on following best practice.

For most participants other than the Steelwork Contractor's construction specialists, bridge erection can seem like the tip of an iceberg; what is seen to happen on site appears relatively straightforward, if sometimes spectacular, but little is known of what goes into achieving an efficient, safe process. Erection is the culmination of a sequence of activities, every one of which is significant, from selecting the site and conceptual design right through to how the components are delivered. Indeed the plans for erection may influence design and will certainly define the fabrication process.

It is in the interests of better teamwork for the steel bridge industry to explain the whole process; there is a cultural gap to be overcome between civil engineering and engineering construction. The aim of this guide is to give new participants in bridge construction involving major steelwork – whether working for Client, Designer, Principal Contractor, or Steelwork Contractor – an understanding of the process leading up to what happens on site, and not just what is done there. As in all construction, safety is a fundamental driver of decision-making and planning: the aim is to describe best practice in today's construction market and thereby help all participants to fulfil their responsibility for health & safety.

This is neither a bridge construction manual nor a safety handbook; rather, it is an introductory guide and reference is made to other industry sources of expert guidance and information. It is complementary to the BCSA publication *Steel Bridges: A Practical Approach to Design for Efficient Fabrication and Construction*, published in 2002.

ACKNOWLEDGMENTS

This guide has been compiled and edited by Ian E Hunter, consultant, formerly of Dorman Long and Cleveland Bridge, from material prepared by the following Working Group of the BCSA Bridgework Conference chaired by Peter Lloyd of Fairfield-Mabey Limited:

 David Allinson
 Cleveland Bridge UK Limited

 John Dale
 Rowecord Engineering Limited

 David Dickson
 Fairfield-Mabey Limited

 Tom Hume
 Watson Steel Structures Limited

 Julian Mason
 Fairfield-Mabey Limited

 Sean O'Connor
 Watson Steel Structures Limited

Allan Painter Kevin Rowe Simon Slinn Peter Taylor Peter Walker Fairfield-Mabey Limited Rowecord Engineering Limited Nusteel Structures Limited Fairfield-Mabey Limited BCSA, previously Cleveland Bridge UK Limited.

The BCSA thanks them for their assistance.